Graphing Quadratics NOTES

Date_____ Period____

1) A PARENT GRAPH is a graph of a relatively simple function that we use to compare to other quadratic function.

Translating: Sliding up or down and/or left or right.

Reflecting: Flipping the graph

Dilating: Stretching(skinny) or Shrink(wider)

Parent Function: $f(x) = x^2$ We will compare other graphs to this one using different transformantions:

2) A TRANSFORMATION is a general term for changing a graph in various ways such as translating, reflecting and dilating.

Given $f(x) = x^2$ is the parent function, then...

 $x^2 + a$: shifts the graph a units up Ex: $x^2 + 3$ moves the graph up 3

 $x^2 - a$: shifts the graph a units down Ex: $x^2 - 3$ moves the graph 3 units down.

 $(x+a)^2$: moves the graph left a units. Ex: $(x+3)^2$ moves graph 3 units left

 $(x-a)^2$: moves the graph right a units. Ex: $(x-3)^2$ moves graph 3 units right.

 $-x^2$: flips the graph

 ax^2 : if a >1 the graph stretches. 0 < a < 1, graph shrinks (gets wider)

Graph the following using transformations. Parent function $f(x) = x^2$ is in bold. Describe the transformation

3) $f(x) = x^2 + 2$ The graph transformed up the y-axis 2 units

5) $f(x) = (x + 3)^2$ The graph transformed left across the x-axis 3 units

7) $f(x) = -x^2 + 2$ The graph transformed up the y-axis 2 units then reflected (flipped)

4) $f(x) = x^2 - 2$ The graph transformed down the y-axis 2 units

6) $f(x) = (x-3)^2$ The graph transformed right across the x-axis 3 units

8) $f(x) = (x + 4)^2 - 1$ The graph transformed left 4 units across the x-axis and down 1

9) $f(x) = 4x^2$ The graph stretched (skinny) by a scale factor of 4

10) $f(x) = \frac{1}{4}x^2$

The graph shrunk (got wider) by a scale factor of $\frac{1}{4}$

Without graphing, describe the transformation

11)
$$f(x) = x^2 + 5$$

13)
$$f(x) = 2x^2 - 3$$

15)
$$f(x) = 5(x+2)^2 + 7$$

17)
$$f(x) = -6(x+3)^2 - 9$$

12)
$$f(x) = (x-3)^2 + 4$$

14)
$$f(x) = \frac{1}{3}x^2 + 1$$

16)
$$f(x) = -x^2 - 8$$

18)
$$f(x) = -\frac{1}{2}(x-6)^2 + 4$$

Graphing Quadratics NOTES

Date_____ Period___

1) A PARENT GRAPH is a graph of a relatively simple function that we use to compare to other quadratic function.

Translating: Sliding up or down and/or left or right.

Reflecting: Flipping the graph

Dilating: Stretching(skinny) or Shrink(wider)

Parent Function: $f(x) = x^2$ We will compare other graphs to this one using different transformantions:

2) A TRANSFORMATION is a general term for changing a graph in various ways such as translating, reflecting and dilating.

Given $f(x) = x^2$ is the parent function, then...

 $x^2 + a$: shifts the graph a units up Ex: $x^2 + 3$ moves the graph up 3

 $x^2 - a$: shifts the graph a units down Ex: $x^2 - 3$ moves the graph 3 units down.

 $(x+a)^2$: moves the graph left a units. Ex: $(x+3)^2$ moves graph 3 units left

 $(x-a)^2$: moves the graph right a units. Ex: $(x-3)^2$ moves graph 3 units right.

 $-x^2$: flips the graph

 ax^2 : if a >1 the graph stretches. 0 < a < 1, graph shrinks (gets wider)

Graph the following using transformations. Parent function $f(x) = x^2$ is in bold. Describe the transformation

3) $f(x) = x^2 + 2$ The graph transformed up the y-axis 2 units

5) $f(x) = (x + 3)^2$ The graph transformed left across the x-axis 3 units

7) $f(x) = -x^2 + 2$ The graph transformed up the y-axis 2 units then reflected (flipped)

4) $f(x) = x^2 - 2$ The graph transformed down the y-axis 2 units

6) $f(x) = (x-3)^2$ The graph transformed right across the x-axis 3 units

8) $f(x) = (x + 4)^2 - 1$ The graph transformed left 4 units across the x-axis and down 1

 $9) \quad f(x) = 4x^2$ The graph stretched (skinny) by a scale

10)
$$f(x) = \frac{1}{4}x^2$$

The graph shrunk (got wider) by a scale factor of $\frac{1}{4}$

Without graphing, describe the transformation

11)
$$f(x) = x^2 + 5$$

Transformed up 5 units

13)
$$f(x) = 2x^2 - 3$$

Stretched by scale factor of 2, moved down 3

15)
$$f(x) = 5(x+2)^2 + 7$$

Stretch scale factor of 5, Left 2 units, up 7

17)
$$f(x) = -6(x+3)^2 - 9$$

Reflect, Stretch by scale factor of 6, left 3, down 9

12)
$$f(x) = (x-3)^2 + 4$$

Moved right 3, up 4

14)
$$f(x) = \frac{1}{3}x^2 + 1$$
 Shrink by scale factor of $\frac{1}{3}$, then move

16)
$$f(x) = -x^2 - 8$$

Reflect (flip), moved down 8

$$f(x) = -6(x+3)^2 - 9$$
Reflect, Stretch by scale factor of 6, left 3, down 9

18)
$$f(x) = -\frac{1}{2}(x-6)^2 + 4$$
Reflect, Shrink by scale factor of 6, left 3, down 9